Homotopy Analysis Method for Solving Kdv Equations

نویسندگان

  • Hossein Jafari
  • M. A. Firoozjaee
  • H. Jafari
چکیده

A scheme is developed for the numerical study of the Korteweg-de Vries (KdV) and the Korteweg-de Vries Burgers (KdVB) equations with initial conditions by a homotopy approach. Numerical solutions obtained by homotopy analysis method are compared with exact solution. The comparison shows that the obtained solutions are in excellent agreement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Solutions to System of Nonlinear Partial Differential Equations Using Homotopy Perturbation Method

Abstract: In this paper, the homotopy perturbation method (HPM) is applied to obtain approximate solutions to three systems of nonlinear wave equations, namely, two component evolutionary system of a homogeneous KdV equations of order 3 (type I) as well as (type II), and the generalized coupled Hirota Satsuma KdV. The numerical results show that this method is a powerful tool for solving system...

متن کامل

Solving a System of Linear Equations by Homotopy Analysis Method

‎In this paper‎, ‎an efficient algorithm for solving a system of linear‎ ‎equations based on the homotopy analysis method is presented‎. ‎The‎ ‎proposed method is compared with the classical Jacobi iterative‎ ‎method‎, ‎and the convergence analysis is discussed‎. ‎Finally‎, ‎two‎ ‎numerical examples are presented to show the effectiveness of the‎ ‎proposed method.‎

متن کامل

Homotopy approximation technique for solving nonlinear‎ ‎Volterra-Fredholm integral equations of the first kind

In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...

متن کامل

Comparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order

The work  addressed in this paper is a comparative study between convergence of the  acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method  and Adomian decomposition method for solving  differential equations of integer and fractional orders.

متن کامل

Modified homotopy perturbation method for solving non-linear oscillator's ‎equations

In this paper a new form of the homptopy perturbation method is used for solving oscillator differential equation, which yields the Maclaurin series of the exact solution. Nonlinear vibration problems and differential equation oscillations have crucial importance in all areas of science and engineering. These equations equip a significant mathematical model for dynamical systems. The accuracy o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010